Реакции характеризующие свойства металлов. Физические и химические свойства металлов

В химических реакциях металлы выступают в роли восстановителей и повышают степень окисления, превращаясь из простых веществ в катионы.

Химические свойства металлов различаются в зависимости от химической активности металла. По активности в водных растворах металлы расположены в ряд напряжений.

В этот ряд, составленный русским химиком Н.Н. Бекетовым, включен также неметалл водород. Активность металлов убывает слева направо:

Запомнить! Металлы, стоящие в ЭХ ряду после водорода, называют неактивными металлами.

Металлы, расположенные в ЭХ ряду до алюминия называют сильноактивными или активными металлами.

Общие химические свойства металлов

1) Многие металлы вступают в реакцию с типичными неметаллами – галогенами, кислородом, серой. При этом образуются соответственно хлориды, оксиды, сульфиды и другие бинарные соединения:

    с азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании;

    с серой металлы образуют сульфиды – соли сероводородной кислоты;

    с водородом самые активные металлы образуют ионные гидриды (бинарные соединения, в которых водород имеет степень окисления -1);

    с кислородом большинство металлов образует оксиды – амфотерные и основные. Основной продукт горения натрия - пероксид $Na_2O_2$; а калий и цезий горят с образованием надпероксидов $MeO_2$.

2) Следует обратить внимание на особенности взаимодействие металлов с водой:

    Активные металлы , находящиеся в ряду активности металлов до Mg (включительно), реагируют с водой с образованием щелочей и водорода:$Ca + 2H_2O = Ca(OH)_2 + H_2\uparrow$

    Активные металлы (например, натрий и литий), взаимодействуют с водой со взрывом.

    Металлы средней активности окисляются водой при нагревании до оксида:

    $6Cr + 6H_2O \xrightarrow{t, ^\circ C} 2Cr_2O_3 + 3H_2\uparrow$

    Неактивные металлы (Au, Ag, Pt) - не реагируют с водой.

$\hspace{1.5cm} \xrightarrow {} MOH +H_2\uparrow$ активные металлы (до Al)

$H_2O + M \xrightarrow {} \hspace{1cm} \ne \hspace{1cm}$ неактивные металлы (после Н)

Более подробно взаимодействие металлов с водой рассмотрено в темах, посвященных химии отдельных групп.

3) С разбавленными кислотами реагируют металлы, стоящие в ЭХР до водорода: происходит реакция замещения с образованием соли и газообразного водорода. При этом кислота проявляет окислительные свойства за счет наличия катиона водорода:

$\mathrm{Mg} + 2\mathrm{HCl} = \mathrm{MgCl}_2 + \mathrm{H}_2$

4) Взаимодействие азотной кислоты (любой концентрации) и концентрированной серной кислоты протекает с образованием других продуктов: кроме соли и водорода в этих реакциях выделяется продукт восстановления серной (или азотной) кислоты. Подробнее см.тему "Взаимодействие азотной кислоты с металлами и неметаллами.

Запомнить! Все металлы, стоящие в ряду левее водорода, вытесняют его из разбавленных кислот, а металлы, расположенные справа от водорода, с растворами кислот не реагируют (азотная кислота – исключение).

5) Активность металлов также влияет на возможность протекания простого вещества металла с оксидом или солью другого металла . Металл вытесняет из солей менее активные металлы, стоящие правее его в ряду напряжений.

Запомнить! Для протекания реакции между металлом и солью другого требуется, чтобы соли, как вступающие в реакцию, так и образующиеся в ходе нее, были растворимы в воде. Металл вытесняет из соли только более слабый металл.

Например, для вытеснения меди из водного раствора сульфата меди подходит железо,

$\mathrm{CuSO}_4 + \mathrm{Fe} = \mathrm{FeSO}_4 + \mathrm{Cu}$

но не подходят свинец – так как он образует нерастворимый сульфат. Если опустить кусочек свинца в раствор сульфата меди, то с поверхности металла покроется тонким слоем сульфата, и реакция прекратится

$\mathrm{CuSO}_4 + \mathrm{Pb} = \mathrm{PbSO}_4\downarrow + \mathrm{Cu}$

Другой пример: цинк легко вытесняет серебро из раствора нитрата серебра, однако реакция цинка со взвесью сульфида серебра, нерастворимого в воде, практически не протекает.

Общие химические свойства металлов обобщены в таблице:

Уравнение реакции Продукты реакции Примечания
с простыми веществами - неметаллами
с кислородом

$4Li + O_2 = 2Li_2O$

оксиды $O^{-2}$

$2Na + O_2 = Na_2O_2$

пероксиды $(O_2)^{-2}$ только натрий

$K + O_2 = KO_2$

надпероксиды $(O_2)^{-2}$ надпероксиды при горении образуют K, Rb, Cs
с водородом

$Ca + H_2 = CaH_2$

гидриды щелочные металлы 0 при комнатной температуре; остальные металлы - при нагревании
с галогенами

$Fe + Cl_2 = Fe^{+3}Cl_3$

хлориды и др.

при взаимодействии с хлором и бромом (сильные окислители) железо и хром образуют хлориды в степени окисления +3
с серой
сульфиды при взаимодействии с серой и иодом железо приобретает степень окисления +2
с азотом и фосфором

$3Mg + N_2 = Mg_3N_2 $

нитриды * при комнатной температуре с азотом реагируют только литий и магний

IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами .

Все элементы IIA группы относятся к s -элементам, т.е. содержат все свои валентные электроны на s -подуровне. Таким образом, электронная конфигурация внешнего электронного слоя всех химических элементов данной группы имеет вид ns 2 , где n – номер периода, в котором находится элемент.

Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:

Ме 0 – 2e — → Ме +2

Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.

Взаимодействие с простыми веществами

с кислородом

Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.

Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO 2):

2Mg + O 2 = 2MgO

2Ca + O 2 = 2CaO

2Ba + O 2 = 2BaO

Ba + O 2 = BaO 2

Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me 3 N 2 .

с галогенами

Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:

Мg + I 2 = MgI 2 – иодид магния

Са + Br 2 = СаBr 2 – бромид кальция

Ва + Cl 2 = ВаCl 2 – хлорид бария

с неметаллами IV–VI групп

Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно бо льшая температура.

Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C 2 2- , фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:

Остальные металлы II А группы образуют с углеродом ацетилениды:

С кремнием металлы IIA группы образуют силициды — соединения вида Me 2 Si, с азотом – нитриды (Me 3 N 2), фосфором – фосфиды (Me 3 P 2):

с водородом

Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.

Взаимодействие со сложными веществами

с водой

Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:

c кислотами-неокислителями

Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:

Ве + Н 2 SO 4(разб.) = BeSO 4 + H 2

Mg + 2HBr = MgBr 2 + H 2

Ca + 2CH 3 COOH = (CH 3 COO) 2 Ca + H 2

c кислотами-окислителями

− разбавленной азотной кислотой

С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N 2 O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH 4 NO 3):

4Ca + 10HNO 3( разб .) = 4Ca(NO 3) 2 + N 2 O + 5H 2 O

4Mg + 10HNO 3(сильно разб.) = 4Mg(NO 3) 2 + NН 4 NO 3 + 3H 2 O

− концентрированной азотной кислотой

Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:

Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.

− концентрированной серной кислотой

Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:

Be + 2H 2 SO 4 → BeSO 4 + SO 2 + 2H 2 O

Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.

Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы может происходить до SO 2 , H 2 S и S в зависимости от активности металла, температуры проведения реакции и концентрации кислоты:

Mg + H 2 SO 4( конц .) = MgSO 4 + SO 2 + H 2 O

3Mg + 4H 2 SO 4( конц .) = 3MgSO 4 + S↓ + 4H 2 O

4Ca + 5H 2 SO 4( конц .) = 4CaSO 4 +H 2 S + 4H 2 O

с щелочами

Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:

Be + 2KOH + 2H 2 O = H 2 + K 2 — тетрагидроксобериллат калия

При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород

Be + 2KOH = H 2 + K 2 BeO 2 — бериллат калия

с оксидами

Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:

Метод восстановления металлов из их оксидов магнием называют магниетермией.

Атомы металлов сравнительно легко отдают валентные электроны и переходят в положительно заряженные ионы. Поэтому металлы являются восстановителями. Металлы взаимодействуют с простыми веществами: Са + С12 - СаС12, Активные металлы реагируют с водой: 2Na + 2Н20 = 2NaOH + H2f. Металлы, стоящие в ряду стандартных электродных потенциалов до водорода, взаимодействуют с разбавленными растворами кислот (кроме HN03) с выделением водорода: Zn + 2НС1 = ZnCl2 + H2f. Металлы реагируют с водными растворами солей менее активных металлов: Ni + CuS04 = NiS04 + Си J. Металлы реагируют с кислотами-окислителями: С. Способы получения металлов Современная металлургия получает более 75 металлов и многочисленные сплавы на их основе. В зависимости от способов получения металлов различают пирогидро- и электрометаллургию. ГГ) Пирометаллургия охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В качестве восстановителей применяют уголь, активные металлы, оксид углерода (II), водород, метан. Cu20 + С - 2Си + СО, t° Cu20 + СО - 2Cu + С02, t° Сг203 + 2А1 - 2Сг + А1203, (алюмотермия) t° TiCl2 + 2Mg - Ti + 2MgCl2, (магнийтермия) t° W03 + 3H2 = W + 3H20. (водородотермия) |Ц Гидрометаллургия - это получение металлов из растворов их солей. Например, при обработке разбавленной серной кислотой медной руды, содержащей оксид меди (И), медь переходит в раствор в виде сульфата: CuO + H2S04 = CuS04 + Н20. Затем медь извлекают из раствора либо электролизом, либо вытеснением с помощью порошка железа: CuS04 + Fe = FeS04 + Си. [з] Электрометаллургия - это способы получения металлов из их расплавленных оксидов или солей с помощью электролиза: электролиз 2NaCl - 2Na + Cl2. Вопросы и задачи для самостоятельного решения 1. Укажите положение металлов в периодической системе Д. И. Менделеева. 2. Покажите физические и химические свойства металлов. 3. Объясните причину общности свойств металлов. 4. Покажите изменение химической активности металлов главных подгрупп I и II групп периодической системы. 5. Каким образом изменяются металлические свойства у элементов II и III периодов? Назовите самый тугоплавкий и самый легкоплавкий металлы. 7. Укажите, какие металлы встречаются в природе в самородном состоянии и какие - только в виде соединений. Чем это можно объяснить? 8. Какова природа сплавов? Как состав сплава влияет на его свойства. Покажите на конкретных примерах. Укажите важнейшие способы получения металлов из руд. 10l Назовите разновидности пирометаллургии. Какие восстановители используют в каждом конкретном способе? Почему? 11. Назовите металлы, которые получают с помощью гидрометаллургии. В чем сущность и каковы преимущества данного метода перед другими? 12. Приведите примеры получения металлов с помощью электрометаллургии. В каком случае используют этот способ? 13. Каковы современные способы получения металлов высокой степени чистоты? 14. Что такое «электродный потенциал»? Какой из металлов имеет наибольший и какой - наименьший электродные потенциалы в водном растворе? 15. Охарактеризуйте ряд стандартных электродных потенциалов? 16. Можно ли вытеснить металлическое железо из водного раствора его сульфата с помощью металлического цинка, никеля, натрия? Почему? 17. Каков принцип работы гальванических элементов? Какие металлы могут в них использоваться? 18. Какие процессы относятся к коррозионным? Какие виды коррозии вам известны? 19. Что называется электрохимической коррозией? Какие способы защиты от нее вам известны? 20. Как влияет на коррозию железа его контакт с другими металлами? Какой металл будет разрушаться первым на поврежденной поверхности луженого, оцинкованного и никелированного железа? 21. Какой процесс называют электролизом? Напишите реакции, отражающие процессы, происходящие на катоде и аноде при электролизе расплава хлорида натрия, водных растворов хлорида натрия, сульфата меди, сульфата натрия, серной кислоты. 22. Какую роль играет материал электродов при протекании процессов электролиза? Приведите примеры процессов электролиза, протекающих с растворимыми и нерастворимыми электродами. 23. Сплав, идущий на приготовление медных монет, содержит 95 % меди. Определите второй металл, входящий в сплав, если при обработке однокопеечной монеты избытком соляной кислоты выделилось 62,2 мл водорода (н. у.). алюминий. 24. Навеска карбида металла массой 6 г сожжена в кислороде. При этом образовалось 2,24 л оксида углерода (IV) (н. у.). Определите, какой металл входил в состав карбида. 25. Покажите, какие продукты выделятся при электролизе водного раствора сульфата никеля, если процесс протекает: а) с угольными; б) с никелевыми электродами? 26. При электролизе водного раствора медного купороса на аноде выделилось 2,8 л газа (н. у.). Какой это газ? Что и в каком количестве выделилось на катоде? 27. Составьте схему электролиза водного раствора нитрата калия, протекающего на электродах. Чему равно количество пропущенного электричества, если на аноде выделилось 280 мл газа (н. у.)? Что и в каком количестве выделилось на катоде?

По своей химической активности металлы очень сильно различаются. О химической активности металла можно примерно судить по его положению в .

Самые активные металлы расположены в начале этого ряда (слева), самые малоактивные - в конце (справа).
Реакции с простыми веществами. Металлы вступают в реакции с неметаллами с образованием бинарных соединений. Условия протекания реакций, а иногда и их продукты сильно различаются для разных металлов.
Так, например, щелочные металлы активно реагируют с кислородом (в том числе в составе воздуха) при комнатной температуре с образованием оксидов и пероксидов

4Li + O 2 = 2Li 2 O;
2Na + O 2 = Na 2 O 2

Металлы средней активности реагируют с кислородом при нагревании. При этом образуются оксиды:

2Mg + O 2 = t 2MgO.

Малоактивные металлы (например, золото, платина) с кислородом не реагируют и поэтому на воздухе практически не изменяют своего блеска.
Большинство металлов при нагревании с порошком серы образуют соответствующие сульфиды:

Реакции со сложными веществами. С металлами реагируют соединения всех классов - оксиды (в том числе вода), кислоты, основания и соли.
Активные металлы бурно взаимодействуют с водой при комнатной температуре:

2Li + 2H 2 O = 2LiOH + H 2 ;
Ba + 2H 2 O = Ba(OH) 2 + H 2 .

Поверхность таких металлов, как, например, магний и алюминий, защищена плотной пленкой соответствующего оксида. Это препятствует протеканию реакции с водой. Однако если эту пленку удалить или нарушить ее целостность, то эти металлы также активно вступают в реакцию. Например, порошкообразный магний реагирует с горячей водой:

Mg + 2H 2 O = 100 °C Mg(OH) 2 + H 2 .

При повышенной температуре с водой вступают в реакцию и менее активные металлы: Zn, Fe, Mil и др. При этом образуются соответствующие оксиды. Например, при пропускании водяного пара над раскаленными железными стружками протекает реакция:

3Fe + 4H 2 O = t Fe 3 O 4 + 4H 2 .

Металлы, стоящие в ряду активности до водорода, реагируют с кислотами (кроме HNO 3) с образованием солей и водорода. Активные металлы (К, Na, Са, Mg) реагируют с растворами кислот очень бурно (с большой скоростью):

Ca + 2HCl = CaCl 2 + H 2 ;
2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 .

Малоактивные металлы часто практически не растворяются в кислотах. Это обусловлено образованием на их поверхности пленки нерастворимой соли. Например, свинец, стоящий в ряду активности до водорода, практически не растворяется в разбавленной серной и соляной кислотах вследствие образования на его поверхности пленки нерастворимых солей (PbSO 4 и PbCl 2).

Вам необходимо включить JavaScript, чтобы проголосовать

Строение атомов металлов определяет не только характерные физические свойства простых веществ – металлов, но и общие их химические свойства.

При большом многообразии все химические реакции металлов относятся к окислительно-восстановительным и могут быть только двух типов: соединения и замещения. Металлы способны при химических реакциях отдавать электроны, то есть быть восстановителями, проявлять в образовавшихся соединениях только положительную степень окисления.

В общем виде это можно выразить схемой:
Ме 0 – ne → Me +n ,
где Ме – металл – простое вещество, а Ме 0+n – металл химический элемент в соединении.

Металлы способны отдавать свои валентные электроны атомам неметаллов, ионам водорода, ионам других металлов, а поэтому будут реагировать с неметаллами – простыми веществами, водой, кислотами, солями. Однако восстановительная способность металлов различна. Состав продуктов реакции металлов с различными веществами зависит и от окислительной способности веществ и условий, при которых протекает реакция.

При высоких температурах большинство металлов сгорает в кислороде:

2Mg + O 2 = 2MgO

Не окисляются в этих условиях только золото, серебро, платина и некоторые другие металлы.

С галогенами многие металлы реагируют без нагревания. Например, порошок алюминия при смешивании с бромом загорается:

2Al + 3Br 2 = 2AlBr 3

При взаимодействии металлов с водой в некоторых случаях образуются гидроксиды. Очень активно при обычных условиях взаимодействуют с водой щелочные металлы, а также кальций, стронций, барий. Схема этой реакции в общем виде выглядит так:

Ме + HOH → Me(OH) n + H 2

Другие металлы реагируют с водой при нагревании: магний при её кипении, железо в парах воды при красном кипении. В этих случаях получаются оксиды металлов.

Если металл реагирует с кислотой, то он входит в состав образующейся соли. Когда металл взаимодействует с растворами кислоты, он может окисляться ионами водорода, имеющимися в этом растворе. Сокращённое ионное уравнение в общем виде можно записать так:

Me + nH + → Me n + + H 2

Более сильными окислительными свойствами, чем ионы водорода, обладают анионы таких кислородосодержащих кислот, как например, концентрированная серная и азотная. Поэтому с этими кислотами реагируют те металлы, которые не способны окисляться ионами водорода, например, медь и серебро.

При взаимодействии металлов с солями происходит реакция замещения: электроны от атомов замещающего – более активного металла переходят к ионам замещаемого – менее активного металла. То сеть происходит замещение металла металлом в солях. Данные реакции не обратимы: если металл А вытесняет металл В из раствора солей, то металл В не будет вытеснять металл А из раствора солей.

В порядке убывания химической активности, проявляемой в реакциях вытеснения металлов друг друга из водных растворов их солей, металлы располагаются в электрохимическом ряду напряжений (активности) металлов:

Li → Rb → K → Ba → Sr → Ca → Na→ Mg → Al → Mn → Zn → Cr → → Fe → Cd→ Co → Ni → Sn → Pb → H → Sb → Bi → Cu → Hg → Ag → Pd → Pt → Au

Металлы, расположенные в этом ряду левее, более активны и способны вытеснять следующие за ними металлы из растворов солей.

В электрохимический ряд напряжений металлов включён водород, как единственный неметалл, разделяющий с металлами общее свойство - образовывать положительно заряженные ионы. Поэтому водород замещает некоторые металлы в их солях и сам может замещаться многими металлами в кислотах, например:

Zn + 2 HCl = ZnCl 2 + H 2 + Q

Металлы, стоящие в электрохимическом ряду напряжений до водорода, вытесняют его из растворов многих кислот (соляной, серной и др.), а все следующие за ним, например, медь не вытесняют.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.