Состояние работающего при воздействии на него неионизирующего излучения. Неионизирующие электромагнитные излучения и поля, их влияние на организм К неионизирующим излучениям в гигиенической практике относят

Электромагнитные поля и излучения (неионизирующие излучения)

Электромагнитная волна -- это колебательный процесс, связанный с изменяющимися в пространстве и во времени взаимосвязанными электрическими и магнитными полями. Область распространения электромагнитных волн называется электромагнитным полем (ЭМП).

Основные характеристики электромагнитного поля. Электромагнитное поле характеризуется частотой излучения f, измеряемой в герцах, или длиной волны л, измеряемой в метрах. Электромагнитная волна распространяется со скоростью света (3 * 108 м/с), и связь между длиной и частотой электромагнитной волны определяется зависимостью

где с -- скорость света. На рис. 2.19 представлен частотный спектр электромагнитных волн.

Электромагнитное поле обладает энергией, а электромагнитная волна, распространяясь в окружающем пространстве, переносит эту энергию. Электромагнитное поле имеет электрическую и магнитную составляющие.

Характеристикой электрической составляющей ЭМП является напряженность электрического поля Е, единицей измерения которой является В/м.

Характеристикой магнитной составляющей ЭМП является напряженность магнитного поля Н (А/м).

Энергию электромагнитной волны принято характеризовать плотностью потока энергии (ППЭ) -- энергией, переносимой электромагнитной волной в единицу времени через единичную площадь. Единицей измерения ППЭ является Вт/м2.

Для отдельных диапазонов ЭМИ (световой диапазон, лазерное излучение) известны другие характеристики, которые будут рассмотрены ниже.

Классификация электромагнитных полей. Электромагнитные поля классифицируются по частотным диапазонам или длине волны. Классификация волн, определяемая длиной (или частотой) волны, представлена в табл. 2.7.

Видимый свет (световые волны), инфракрасное (тепловое) и ультрафиолетовое излучение -- это также электромагнитная волна. Эти виды коротковолнового излучения оказывают на человека специфическое воздействие.

Электромагнитные волны очень высоких частот относятся к ионизирующим излучениям (рентгеновским и гамма-излучениям). Из-за большой частоты эти волны обладают высокой энергией, достаточной для того, чтобы ионизировать молекулы вещества, в котором распространяется волна. Поэтому-то это излучение относится к ионизирующему излучению и рассматривается в параграфе, посвященном ионизирующим излучениям.

Электромагнитный спектр радиочастотного диапазона условно разделен на четыре частотных диапазона: низкие частоты (НЧ) -- менее 30 кГц, высокие частоты (ВЧ) -- 30 кГц...30 МГц, ультравысокие чатоты (УВЧ) -- 30...300 МГц, сверхвысокие частоты (СВЧ) -- 300 МГц...750 ГГц.

Таблица 2.7. Классификация электромагнитных полей

Название волны и излучения

Длина волны, м

Частота излучения, Гц

Радиочастотные

Сверхдлинные (СВД)

Менее 30* (менее 30 кГц)

Длинные (ДВ)

30*103…300*103 (30…300 кГц)

Средние (СВ)

300*103…3000*103 (300…3000 кГц)

Коротние (КВ)

3*106…30*103 (3…30 МГц)

Ультракоротние (УКВ)

метровые

дециметровые

сантиметровые

миллиметровые

  • 1…10-1 (10…1 дм)
  • 10-1…10-2 (10…1 см)
  • 10-2…10-3 (10…1 мм)
  • 30*106…300*106 (30…300 МГц)
  • 300*106…3000*106 (300…3000 МГц)
  • 3*109…30*109 (3…30 ГГц)
  • 30*109…300*109 (30…300 ГГц)

Субмиллиметровые

10-3…0,4*10-3 (1…0,4 мм)

300*109…750*109 (300…750 ГГц)

Оптические

Инфракрасные (тепловое излучение)

  • 0,4*10-3…0,76*10-6
  • (0,4*10-3…0,76 мкм)

0,75*1012…395*1012 (0,75…395 ТГц)

Световые волны

  • 0,76*10-6…0,4*10-6
  • (0,76…0,4 мкм)

395*1012…750*1012 (395…750 ТГц)

Ультрафиолетовые лучи

  • 0,4*10-6…2*10-6
  • (0,4 мкм…20А)

750*1012… 1,51017 (750…1,5*1017 ТГц)

Ионизирующие*

Рентгеновские

  • 2*10-10…0,06*10-10
  • (20…0,06Е)

1,5*1017…5*1019 (1,5*105…5*107 ТГц)

Гамма-лучи

Менее 0,06*10-10

(менее 0,06Е)

Более 5*1019 (более 5*107 ТГц)

кГц - килогерц, МГц - мегагерц, ГГц - гигагерц, ТГЦ - терагерц, мкм - микрометр, Е - ангстрем

*Ионизирующие электромагнитные волны рассмотрены в параграфе «Ионизирующие изулчения».

Особой разновидностью ЭМИ является лазерное излучение (ЛИ), генерируемое в диапазоне длин волн 0,1...1000 мкм. Особенностью ЛИ является его монохроматичность (строго одна длина волны), когерентность (все источники излучения испускают волны в одной фазе), острая направленность луча (малое расхождение луча).

Условно к неионизирующим излучениям (полям) можно отнести электростатические поля (ЭСП) и магнитные поля (МП).

Электростатическое поле -- это поле неподвижных электрических зарядов, осуществляющее взаимодействие между ними. Статическое электричество -- совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков или на изолированных проводниках.

Магнитное поле может быть постоянным, импульсным, переменным.

Источники ЭМП на производстве. К источникам ЭМП на производстве относятся две большие группы источников:

изделия, которые специально созданы для излучения электромагнитной энергии: радио- и телевизионные вещательные станции, радиолокационные установки, физиотерапевтические аппараты, различные системы радиосвязи, технологические установки в промышленности. ЭМП широко используются в промышленности, например в таких технологических процессах, как закалка и отпуск стали, накатка твердых сплавов на режущий инструмент, плавка металлов и полупроводников и т. д.;

Электростатические поля (ЭСП) создаются в энергетических установках и при электротехнических процессах. В зависимости от источников образования они могут существовать в виде собственно электростатического поля (поля неподвижных зарядов) или стационарного электрического поля (электрическое поле постоянного тока). В промышленности ЭСП широко используются для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов. Статическое электричество образуется при изготовлении, испытаниях, транспортировке и хранении полупроводниковых приборов и интегральных схем, шлифовке и полировке футляров радиотелевизионных приемников, в помещениях вычислительных центров, на участках множительной техники, а также в ряде других процессов, где используются диэлектрические материалы. Электростатические заряды и создаваемые ими электростатические поля могут возникать при движении диэлектрических жидкостей и некоторых сыпучих материалов по трубопроводам, переливании жидкостей-диэлектриков, скатывании пленки или бумаги в рулон.

Магнитные поля создаются электромагнитами, соленоидами, установками конденсаторного типа, литыми и металлокерамическими магнитами и др. устройствами.

В ЭМП различаются три зоны, которые формируются на различных расстояниях от источника ЭМИ.

Первая зона -- зона индукции (ближняя зона) охватывает промежуток от источника излучения до расстояния, равного примерно Х/2п к 1/бЛ.. В этой зоне электромагнитная волна еще не сформирована и поэтому электрическое и магнитное поля не взаимосвязаны и действуют независимо.

Вторая зона -- зона интерференции (промежуточная зона) располагается на расстояниях примерно от Х/2к до 2кХ. В этой зоне происходит формирование ЭМВ и на человека действует электрическое и магнитное поля, а также оказывается энергетическое воздействие.

Третья зона -- волновая зона (дальняя зона) располагается на расстояниях свыше 2пХ. В этой зоне ЭМВ сформирована, электрическое и магнитное поля взаимосвязаны. На человека в этой зоне воздействует энергия волны.

Воздействие неионизирующих излучений на человека. Электромагнитные поля биологически активны -- живые существа реагируют на их действие. Однако у человека нет специального органа чувств для определения ЭМП (за исключением оптического диапазона). Наиболее чувствительны к электромагнитным полям центральная нервная система, сердечно-сосудистая, гормональная и репродуктивная системы.

Длительное воздействие на человека электромагнитных полей промышленной частоты (50 Гц) приводит к расстройствам, которые субъективно выражаются жалобами на головную боль в височной и затылочной области, вялость, расстройство сна, снижение памяти, повышенную раздражительность, апатию, боли в сердце, нарушение ритма сердечных сокращений. Могут наблюдаться функциональные нарушения в центральной нервной системе, а также изменения в составе крови.

Воздействие электростатического поля на человека связано с протеканием через него слабого тока. При этом электротравм никогда не наблюдается. Однако вследствие рефлекторной реакции на протекающий ток возможна механическая травма от удара о расположенные рядом элементы конструкций, падение с высоты и т. д. К ЭСП наиболее чувствительны центральная нервная система, сердечно-сосудистая система. Люди, работающие в зоне действия ЭСП, жалуются на раздражительность, головную боль, нарушение сна.


При воздействии магнитных полей могут наблюдаться нарушения функций нервной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в составе крови. При локальном действии магнитных полей (прежде всего на руки) появляется ощущение зуда, бледность и синюшность кожных покровов, отечность и уплотнение, а иногда ороговение кожи.

Воздействие ЭМИ радиочастотного диапазона определяется плотностью потока энергии, частотой излучения, продолжительностью воздействия, режимом облучения (непрерывное, прерывистое, импульсное), размером облучаемой поверхности тела, индивидуальными особенностями организма. Воздействие ЭМИ может проявляться в различной форме -- от незначительных изменений в некоторых системах организма до серьезных нарушений в организме. Поглощение организмом человека энергии ЭМИ вызывает тепловой эффект. Начиная с определенного предела организм человека не справляется с отводом теплоты от отдельных органов, и их температура может повышаться. В связи с этим воздействие ЭМИ особенно вредно для тканей и органов со слаборазвитой сосудистой системой и недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузыри). Облучение глаз может привести к ожогам роговицы, а облучение ЭМИ СВЧ-диапазона -- к помутнению хрусталика -- катаракте.

При длительном воздействии ЭМИ радиочастотного диапазона даже умеренной интенсивности могут произойти расстройства нервной системы, обменных процессов, изменения состава крови. Могут также наблюдаться выпадение волос, ломкость ногтей. На ранней стадии нарушения носят обратимый характер, но в дальнейшем происходят необратимые изменения в состоянии здоровья, стойкое снижение работоспособности и жизненных сил.

Инфракрасное (тепловое) излучение, поглощаясь тканями, вызывает тепловой эффект. Наиболее поражаемые ИК-излучением -- кожный покров и органы зрения. При остром повреждении кожи возможны ожоги, резкое расширение капилляров, усиление пигментации кожи. При хроническом облучении появляется стойкое изменение пигментации, красный цвет лица, например у стеклодувов, сталеваров. Повышение температуры тела ухудшает самочувствие, снижает работоспособность человека.

Световое излучение при высоких энергиях также представляет опасность для кожи и глаз. Пульсации яркого света ухудшают зрение, снижают работоспособность, воздействуют на нервную систему (подробнее световое излучение рассматривается в главе 2 раздела 4).

Ультрафиолетовое излучение (УФИ) большого уровня может вызвать ожоги глаз вплоть до временной или полной потери зрения, острое воспаление кожи с покраснением, иногда отеком и образование пузырей, при этом возможно повышение температуры, появление озноба, головная боль. Острые поражения глаз называются электроофтальмией. Хроническое УФИ умеренного уровня вызывает изменение пигментации кожи (загар), вызывает хронический конъюктивит, воспаление век, помутнение хрусталиках Длительное воздействие излучения приводит к старению кожи, развитию рака кожи. УФИ небольших уровней полезно и даже необходимо для человека. Но в производственных условиях УФИ, как правило, является вредным фактором.

Воздействие лазерного излучения (ЛИ) на человека зависит от интенсивности излучения (энергии лазерного луча), длины волны (инфракрасного, видимого или ультрафиолетового диапазона), характера излучения (непрерывное или импульсное), времени воздействия. На рис. 2.20 представлены факторы, определяющие биологическое действие лазерного излучения. Лазерное излучение действует избирательно на различные органы, выделяют локальное и общее повреждение организма.

При облучении глаз легко повреждаются и теряют прозрачность роговица и хрусталик. Нагрев хрусталика приводит к образованию катаракты. Для глаз наиболее опасен видимый диапазон лазерного излучения, для которого оптическая система глаза становится прозрачной и поражается сетчатка глаза. Поражение сетчатки глаза может привести к временной потери зрения, а при высоких энергиях лазерного луча даже к разрушению сетчатки с потерей зрения.

Лазерное излучение наносит повреждения кожи различных степеней -- от покраснения до обугливания и образования глубоких дефектов кожи, особенно на пигментированных участках (родимые пятна, места с сильным загаром).

ЛИ, особенно инфракрасного диапазона, способно проникать через ткани на значительную глубину, поражая внутренние органы. Например, прямое облучение поверхности брюшной стенки вызывает повреждение печени, кишечника и других органов, при облучении головы возможны внутричерепные кровоизлияния.

Длительное воздействие лазерного излучения даже небольшой интенсивности может привести к различным функциональным нарушениям нервной, сердечно-сосудистой систем, желез внутренней секреции, артериального давления, повышению утомляемости, снижению работоспособности.

Гигиеническое нормирование электромагнитных полей. Нормирование ЭМИ радиочастотного диапазона (РЧ-диапазона) осуществляется в соответствии с ГОСТ 12.1.006--84. Для частотного диапазона 30 кГц...300 МГц предельно допустимые уровни излучения определяются по энергетической нагрузке, создаваемой электрическим и магнитным полями

ЭНE=E2 T; ЭНН= Н2Т,

где Т -- время воздействия излучения в часах.

Предельно допустимая энергетическая нагрузка зависит от частотного диапазона и представлена в табл. 2.8.

Таблица 2.8. Предельно допустимая энергетическая нагрузка

Максимальное значение для ЭНE составляет 20 000 В2 * ч/м2, для ЭНН -- 200 А2 * ч/м2. Используя указанные формулы, можно определить допустимые напряженности электрического и магнитного полей и допустимое время воздействия облучения:

ПДУE=, B/м; ПДУH=, А/м;

Tдоп=, ч; Tдоп=, А/м;

Для частотного диапазона 300 МГц...300 ГГц при непрерывном облучении допустимая ППЭ зависит от времени облучения и определяется по формуле

ПДУппэ = Вт/м2,

где Т -- время воздействия в часах.

Для излучающих антенн, работающих в режиме кругового обзора, и локального облучения кистей рук при работе с микроволновыми СВЧ-устройствами предельно допустимые уровни определяются по формуле

ПДУппэ = k Вт/м2,

где к= 10 для антенн кругового обзора и 12,5 -- для локального облучения кистей рук, при этом независимо от продолжительности воздействия ППЭ не должна превышать 10 Вт/м2, а на кистях рук -- 50 Вт/м2.

Несмотря на многолетние исследования, сегодня ученым еще далеко не все известно о влиянии ЭМП на здоровье человека. Поэтому лучше ограничивать облучение ЭМИ, даже если их уровни не превышают установленные нормативы.

При одновременном воздействии на человека ЭМИ различных РЧ-диапазонов должно выполняться условие

где Еi, Hi, ППЭi, -- соответственно реально действующие на человека напряженность электрического и магнитного поля, плотность потока энергии ЭМИ; ПДУEi, ПДУHi, ПДУППЭi, - предельно допустимые уровни для соответствующих диапазонов частот.

Нормирование ЭМИ промышленной частоты (50 Гц) в рабочей зоне осуществляется по ГОСТ 12.1.002--84. Расчеты показывают, что в любой точке ЭМП, возникающего в электроустановках промышленной частоты, напряженность магнитного поля существенно меньше напряженности электрического поля. Так, напряженность магнитного поля в рабочих зонах распределительных устройств и линий электропередач напряжением до 750 кВ не превышает 20--25 А/м. Вредное же действие магнитного поля на человека проявляется лишь при напряженности поля свыше 150 А/м. Поэтому сделан вывод, что вредное действие ЭМП промышленной частоты может быть обусловлено лишь действием электрического поля. Для ЭМП промышленной частоты (50 Гц) установлены предельно допустимые уровни напряженности электрического поля.

Допустимое время пребывания персонала, обслуживающего установки промышленной частоты определяется по формуле

где Т -- допустимое время нахождения в зоне с напряженностью электрического поля Е в часах; Е -- напряженность электрического поля в кВ/м.

Из формулы видно, что при напряженности 25 кВ/м пребывание в зоне недопустимо без применения индивидуальных средств защиты человека, при напряженности 5 кВ/м и менее допустимо нахождение человека в течение всей 8-часовой рабочей смены.

При нахождении персонала в течение рабочего дня в зонах с различной напряженностью допустимое время пребывания человека можно определить по формуле

T = 8(tE/ TE + tE/ TE+ tn/TE),

где tE tE,… TE -- время пребывания в контролируемых зонах соответственно напряженностью Е1 Е2,... Еn; TE, TE…TE),-- допустимое время пребывания в зонах соответствующей напряженности, рассчитанное по формуле (каждое значение не должно превышать 8 ч).

Предельно допустимое значение напряженности электростатических полей (ЭСП) устанавливается в ГОСТ 12.1.045--84 и не должно превышать 60 кВ/м при действии в течение 1 ч. При напряженности ЭСП менее 20 кВ/м время пребывания в поле не регламентируется.

Напряженность магнитного поля (МП) в соответствии с ПДУ 1742--77 на рабочем месте не должна превышать 8 кА/м.

Нормирование инфракрасного (теплового) излучения (ИК-излучения) осуществляется по интенсивности допустимых суммарных потоков излучения с учетом длины волны, размера облучаемой площади, защитных свойств спецодежды в соответствии с ГОСТ 12.1.005-88 и СанПиН 2.2.4.548-96.

Гигиеническое нормирование ультрафиолетового излучения (УФИ) в производственных помещениях осуществляется по СН 4557--88, в которых установлены допустимые плотности потока излучения в зависимости от длины волны при условии защиты органов зрения и кожи.

Гигиеническое нормирование лазерного излучения (ЛИ) осуществляется по СанПиН 5804--91. Нормируемыми параметрами являются энергетическая экспозиция (Н, Дж/см2 -- отношение энергии излучения, падающей на рассматриваемый участок поверхности, к площади этого участка, т. е. плотность потока энергии). Значения предельно допустимых уровней различаются в зависимости от длины волны ЛИ, длительности одиночного импульса, частоты следования импульсов излучения, длительности воздействия. Установлены различные уровни для глаз (роговицы и сетчатки) и кожи.

Контрольные вопросы

Дайте определение электромагнитной волны. Какими параметрами характеризуется электромагнитное поле?

Как классифицируются электромагнитные волны по длине волны или частотным диапазонам? Дайте характеристику основных частотных диапазонов.

Назовите источники электростатических и магнитных полей.

Как воздействует ЭСП и поле промышленной частоты на человека?

Как воздействует на человека ЭМП радиочастотного диапазона?

Как воздействует лазерное излучение на человека?

Как воздействует на человека инфракрасное и ультрафиолетовое излучение?

Какие зоны формируются у источника ЭМП и каковы их характерные размеры? Какова протяженность ближней зоны (зоны индукции) источника ЭМИ промышленной частоты?

Как осуществляется гигиеническое нормирование ЭМИ радиочастотного диапазона? Какие параметры и в каких частотных диапазонах нормируются?

Как осуществляется нормирование ЭМИ промышленной частоты?

От каких характеристик ЛИ зависит его биологическое действие на человека?

Какой параметр ЛИ нормируется и от каких характеристик излучения он зависит?

Укажите источники ЭМИ на производстве, связанным с вашей будущей специальностью. Каковы их частотные диапазоны?

Повсюду нас окружают электромагнитные поля. В зависимости от своего волнового диапазона, они по-разному могут действовать на живые организмы. Более щадящими считаются неионизирующие излучения, однако и они порой небезопасны. Что это за явления, и какое влияние они оказывают на наш организм?

Что такое неионизирующие излучения?

Энергия распространяется в виде мелких частиц и волн. Процесс её испускания и распространения и называется излучением. По характеру воздействия на предметы и живые ткани различают два основных его вида. Первое - ионизирующее, представляет собой потоки элементарных частиц, которые образуются в результате деления атомов. Оно включает радиоактивное, рентгеновское, гравитационное излучение и лучи Хокинга.

Ко второму относятся неионизирующие излучения. По сути, это электромагнитные которых составляет больше 1000 нм, а количество выделенной энергии меньше 10 кэВ. Оно действует в виде микроволн, в результате выделяя свет и тепло.

В отличие от первого вида, данное излучение не ионизирует молекулы и атомы вещества, на которое воздействует, то есть не разрывает связи между его молекулами. Конечно, и здесь есть свои исключения. Так, отдельные виды, например, УФ-лучи могут ионизировать вещество.

Виды неионизирующих излучений

Электромагнитное излучение представляет гораздо более широкое понятие, чем неионизирующее. Высокочастотные рентгеновские и гамма-лучи также являются электромагнитными, однако они более жесткие и ионизируют вещество. Все остальные виды ЭМИ относятся к неионизирующим, их энергии не хватает для того, чтобы вмешаться в структуру материи.

Наибольшей длиной среди них обладают радиоволны, чей диапазон колеблется от сверхдлинных (более 10 км) до ультракоротких (10 м - 1 мм). Волны остальных ЭМ излучений составляют меньше 1 мм. После радиоизлучения идет инфракрасное или тепловое, длина его волн зависит от температуры нагревания.

Неионизирующими также являются видимое световое и Первое часто называется оптическим. Своим спектром оно очень близко к инфракрасным лучам и образуется при нагревании тел. Ультрафиолетовое излучение приближено к рентгеновскому, поэтому может обладать способностью к ионизации. При длине волн от 400 до 315 нм оно распознается человеческим глазом.

Источники

Неионизирующие электромагнитные излучения могут быть как природного, так и искусственного происхождения. Одним из главных природных источников является Солнце. Оно посылает все виды излучения. Полному их проникновению на нашу планету препятствует земная атмосфера. Благодаря озоновому слою, влажности, углекислому газу действие вредоносных лучей сильно смягчается.

Для радиоволн естественным источником может служить молния, а также космические объекты. Тепловые инфракрасные лучи может испускать любое нагретое до нужной температуры тело, хотя основное излучение исходит от искусственных объектов. Так, основными его источниками являются обогреватели, горелки и обыкновенные лампочки накаливания, которые присутствуют в каждом доме.

Влияние на человека

Электромагнитное излучение характеризуется длиной волны, частотой и поляризацией. От всех этих критериев и зависит сила его воздействия. Чем волна длиннее, тем меньше энергии она переносит на объект, а значит, является менее вредной. Наиболее губительно действуют излучения в дециметрово-сантиметровом диапазоне.

Неионизирующие излучения при длительном воздействии на человека способны причинить вред здоровью, хотя в умеренных дозах они могут быть полезны. могут вызвать ожоги кожи и глазной роговицы, вызвать различные мутации. А в медицине с их помощью синтезируют в коже витамин D3, стерилизуют оборудование, обеззараживают воду и воздух.

В медицине инфракрасное излучение используют для улучшения метаболизма и стимуляции кровообращения, дезинфекции пищевых продуктов. При излишнем нагреве это излучение способно сильно иссушить слизистую глаза, а на максимальной мощности - даже разрушить молекулу ДНК.

Радиоволны используют для мобильной и радиосвязи, навигационных систем, телевидения и других целей. Постоянное действие радиочастот, исходящих от бытовых приборов, может повысить возбудимость нервной системы, ухудшить работу мозга, негативно сказаться на сердечно-сосудистой системе и детородной функции.

Электромагнитные поля (ЭМП) и электромагнитные излучения (ЭМИ) являются вредными факторами, которые негативно влияют на человека и окружающую среду. ЭМИ — это не только источник образования электромагнитного поля, но и сам процесс. ЭМП представляет собой особую форму материи, состоящую из взаимосвязанных электрического и магнитного полей. Напряженности этих полей расположены перпендикулярно друг другу. Непрерывно изменяясь, они возбуждают друг друга. Электромагнитное поле сохраняется и оказывает негативное воздействие еще долгое время после того, как источник его возникновения (излучатель) прекратил или приостановил свое действие.

Электромагнитное загрязнение как проблема сформировалась в результате резкого увеличения за последние десятилетия количества различных источников ЭМИ техногенного характера. Возникшая проблема повлекла за собой необходимость досконального изучения физических основ данного фактора, а также выработки мер по защите работников на производстве, населения и окружающей среды, оказавшихся в условиях электромагнитного загрязнения, превышающего допустимые уровни.

Под электромагнитным загрязнением среды понимают состояние электромагнитной обстановки, характеризуемое наличием в атмосфере электромагнитных полей повышенной интенсивности, создаваемых техногенными и природными источниками излучения. Физики и экологи называют электромагнитное загрязнение «вяло текущей чрезвычайной ситуацией».

Степень воздействия на работающих магнитного поля зависит от его параметров (основных характеристик). Основными параметрами источника ЭМП являются: частота электромагнитных колебаний (единица — Гц) и длина волны (единица — м). Критерием интенсивности электрического поля служит его напряженность (единица — В/м). Критерием интенсивности магнитного поля также является его напряженность (единица — А/м).

К основным неионизирующим ЭМП и ЭМИ относятся:

Геомагнитное поле Земли;

Электрические и магнитные поля промышленной частоты;

Электромагнитные излучения радиочастотного диапазона;

Электромагнитные излучения оптического диапазона;

Электростатические поля.

Геомагнитное поле Земли характеризуется постоянно изменяющейся напряженностью. Значительные изменения интенсивности ЭМП могут происходить при геомагнитных природных возмущениях — магнитных бурях. Организм метеочувствительных людей реагирует на резкие возрастания естественного геомагнитного поля повышением артериального давления, головной болью, общей слабостью.

Меры по защите — постоянный контроль электромагнитной обстановки путем проведения электромагнитного мониторинга, метеопрогноз, экспресс-оценка геомагнитной обстановки соответствующими службами; оповещение населения через СМИ о предстоящей магнитной буре. При возникновении геомагнитных возмущений в магнитосфере Земли посредством СМИ людям с повышенной метеочувствительностью даются рекомендации о лекарственных и немедикаментозных средствах, а также о правилах поведения для них в дни нестабильной геомагнитной обстановки.

Неионизирующие электромагнитные излучения.

Влияние на деятельность человека электромагнитных полей промышленной частоты и радиоволн.

Нормирование сверхвысокочастотного излучения

1. Безопасность жизнедеятельности / под ред. Белова С.В. – М.: Высшая школа, 1999. – 448 с., ил.

2. Русак О.Н., Малаян К.Р., Занько Н.Г. Безопасность жизнедеятельности. – СПб: Издательство «Лань», 2000. – 448 с., ил.

3. Маньков В. Д. Безопасность жизни и деятельности. Часть I. Безопасность общества и человека в современном мире: Учеб. пособие для военных ВУЗов. – СПб: МО РФ, 2002. – 500 с., ил.

4. Быков А. А., Мурзин Н. В. Проблема анализа безопасности человека, общества и природы. СПб.: Наука, 1997. – 182 с.

5. Хенли Д. Надежность технических систем и оценка риска. М.: Машиностроение, 1979. – 359 с.

6.Медицина катастроф. Учеб. пособие. / Под ред. проф. В. М. Рябочкина. М.: ИНИЛтд, 1996. – 272 с., ил.

7. Алексеев Н. А. Стихийные явления в природе. М.: Мысль, 1988. – 255 с., ил.

Неионизирующие электромагнитные излучения

При ускоренном движении электрических зарядов возникают электромагнитные волны (f = 10 3 …10 24 Гц). Они делятся на:

Радиоволны;

Инфракрасное излучение;

Видимый свет;

Ультрафиолетовое излучение;

Рентгеновское и гамма – излучения.

Первые четыре группы относят к неионизирующим электромагнитным волнам.

Источниками электромагнитных полей являются:

Природные источники (космические лучи, излучение солнца, атмосферное электричество);

Антропогенные источники (генераторы, трансформаторы, антенны, лазерные установки, микроволновые печи, компьютеры).

На предприятиях источниками электромагнитных полей промышленной частоты являются линии электропередач, измерительные приборы, устройства защиты и автоматики, соединительные шины.

Скорость распространения ЭМИ постоянна и равна С = 3×10 8 м/с.

λ – длина волны, м.

f – частота, Гц

f = 10 3 Гц λ = С/f = 3×10 8 /10 3 = 3×10 5 м = 300 км

f = 10 24 Гц λ = С/f = 3×10 8 /10 24 = 3×10 -16 м = 3×10-10 мкм.

Качественными характеристиками электромагнитных полей являются:

Напряженность электрического поля Е, вольт на метр (В/м);

Напряженность магнитного поля Н, ампер на метр (А/м);

Плотность потока энергии J, ватт на метр квдратный (Вт/м 2).

Большую часть спектра электромагнитных излучений (ЭМИ) составляют радиоволны , меньшую часть - колебания оптического диапазона (инфракрасное, видимое, ультрафиолетовое излучения).

В зависимости от частоты падающего электромагнитного излучения ткани организмов проявляют различные электрические свойства и ведут себя как проводник или как диэлектрик.

В зависимости от места и условий воздействия ЭМИ различают четыре вида облучения: профессиональное, непрофессиональное, облучение в быту и облучение, осуществляемое в лечебных целях, а по характеру облучения - общее и местное.

Степень и характер воздействия ЭМИ на организм определяются плотностью потока энергии, частотой излучения, продолжительностью воздействия, режимом облучения (непрерывный, прерывистый, импульсный),

Следствием поглощения энергии ЭМИ является тепловой эффект. Избыточная теплота, выделяющаяся в организме человека, отводится путем увеличения нагрузки на механизм терморегуляции; начиная с определенного предела, организм не справляется с отводом теплоты от отдельных органов и температура их может повышаться.

Воздействие ЭМИ особенно вредно для тканей со слаборазвитой сосудистой системой или недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузырь). Облучение глаз может привести к помутнению хрусталика (катаракте). Помимо катаракты при воздействии ЭМИ возможны ожоги роговицы.

Острые нарушения при воздействии ЭМИ (аварийные ситуации) сопровождаются сердечно-сосудистыми расстройствами с обмороками, резким учащением пульса и снижением артериального давления.

В основу гигиенического нормирования положен принцип действующей дозы, учитывающей энергетическую нагрузку.

В диапазоне частот 60 кГц...300 МГц интенсивность электромагнитного поля выражается предельно допустимой напряженностью электрического и магнитного полей.

Оптическое излучение

Инфракрасное излучение (ИК) - часть электромагнитного спектра с длиной волны λ = 0,78…1000 мкм, энергия которого при поглощении в веществе вызывает тепловой эффект.

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ , не видимое глазом электромагнитное излучение в пределах длин волн l от 1-2 мм до 0,74 мкм. Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Напр., слой воды в несколько см непрозрачен для инфракрасного излучения.

Наиболее поражаемые у человека органы - кожный покров и органы зрения; при остром повреждении кожи возможны ожоги, усиление пигментации кожи; мутагенный эффект ИК - облучения.

Видимое излучение - диапазон электромагнитных колебаний 0,4…0,78 мкм. Излучение видимого диапазона при достаточных уровнях энергии также может представлять опасность для кожных покровов и органа зрения. Пульсации яркого света вызывают сужение полей зрения, оказывают влияние на состояние зрительных функций, нервной системы, общую работоспособность.

Широкополосное световое излучение больших энергий характеризуется световым импульсом, действие которого на организм приводит к ожогам открытых участков тела, временному ослеплению или ожогам сетчатки глаз.

Оптическое излучение видимого и инфракрасного диапазона при избыточной плотности может приводить к изменениям в сердечной мышце.

Ультрафиолетовое излучение (УФИ) - спектр электромагнитных колебаний с длиной волны 0,2...0,4 мкм.

УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ , не видимое глазом электромагнитное излучение в пределах длин волн l=400-10 нм. Различают ближнее ультрафиолетовое излучение (400-200 нм) и дальнее, или вакуумное (200-10 нм).(1 нм = 10 -9 м).

Ультрафиолетовое излучение, составляющее приблизительно 5 % плотности потока солнечного излучения,- жизненно необходимый фактор, оказывающий благотворное стимулирующее действие на организм.

Ультрафиолетовое излучение искусственных источников (например, электросварочных дуг, плазмотронов) может стать причиной острых и хронических профессиональных поражений. Наиболее уязвимы глаза, причем страдает преимущественно роговица и слизистая оболочка.

Лазерное излучение (ЛИ) представляет собой особый вид электромагнитного излучения, генерируемого в диапазоне длин волн 0,1...1000 мкм. Отличие ЛИ от других видов излучения заключается в монохроматичности, когерентности и высокой степени направленности.

КОГЕРЕНТНОСТЬ (от лат. cohaerens - находящийся в связи), согласованное протекание во времени нескольких колебательных или волновых процессов. Если разность фаз 2 колебаний остается постоянной во времени или меняется по строго определенному закону, то колебания называются когерентными. Колебания, у которых разность фаз изменяется беспорядочно и быстро по сравнению с их периодом, называются некогерентными.

МОНОХРОМАТИЧЕСКИЙ СВЕТ , световые колебания одной частоты. Свет, близкий к монохроматическому свету, получают, выделяя спектральную линию или узкий участок спектра при помощи спектральных приборов (монохроматоров, светофильтров и др.). Свет высокой степени монохроматичности излучают лазеры, а также свободные атомы.

Степень повреждения кожи зависит от первоначально поглощенной энергии. Повреждения могут быть различными: от покраснения до поверхностного обугливания и образования глубоких дефектов кожи.

Прямое облучение поверхности брюшной стенки вызывает повреждение печени, кишечника и других органов брюшной полости; при облучении головы возможны внутричерепные кровоизлияния.


Похожая информация.


В промышленности широко применяются электромагнитные поля, как постоянные так и переменные. Их применяют для термообработки материалов, для получения плазменного состояния вещества, для радиовещания и телевидения.

Применение новых технологических процессов значительно улучшает условия труда, однако устройства генерирующие электромагнитные поля, обусловили возникновение новых проблем по защите персонала от их воздействия. Опасность электромагнитных полей, постоянных магнитных и электростатических полей усугубляется тем, что они не обнаруживаются органами чувств.

К неионизирующим излучениям и полям относят электромагнитные излучения радиочастотного и оптического диапазонов, а также условно - статические электрические и постоянные магнитные поля.

Электромагнитные излучения (ЭМИ) распространяются в виде элек­тромагнитных волн, основными характеристиками которых являются: длина волны , м; частота колебаний f, Гц; скорость распространения v, м/с. В свободном пространстве скорость распространения ЭМИ равна скоро­сти света с = 3*10 8 м/с, при этом указанные выше параметры связаны ме­жду собой соотношением: = c/f.

В зависимости от длины волны весь радиодиапазон разбит на поддиапозоны.

Область распространения электромагнитных волн от источника излучения условно подразделяют на три зоны: ближнюю (имеющую радиус менее 1/6 длины волны), промежуточную и дальнюю (расположенную на расстоянии более 1/6 длины волны от источника). В ближней и промежуточной зоне волна еще не сформирована, поэтому интенсивность ЭМП в этих зонах оценивается раздельно напряженностью электрической Е (В/м) и магнитной Н (А/м) составляющих поля.

В дальней зоне воздействие ЭМП оценивается плотностью потока энергии

П=Е*Н (Вт/м 2)

Электрическое поле воздействует следующим образом: в электрическом поле атомы и молекулы, из которых состоит тело человека, поляризуются, полярные молекулы ориентируются по направлению распространения электромагнитного поля. В электролитах, которыми являются жидкие составляющие тканей, крови и т.п., после воздействия внешнего поля появляются ионные токи.

Переменное электромагнитное поле вызывает нагрев тканей человека.

Избыточная теплота отводится до известного предела путем увеличения нагрузки на механизм терморегуляции. Однако начиная с величины П=10 мВТ/см 2 , называемой тепловым порогом, организм не справляется с отводом образующейся теплоты, и температура тела повышается, что наносит вред здоровью.

Наиболее интенсивно электромагнитные поля воздействуют на органы с большим содержанием воды. Перегрев же особенно вреден для тканей со слаборазвитой сосудистой системой или с недостаточным кровообращением (глаза, мозг, почки, желудок), так как кровеносная система выступает в роли системы водяного охлаждения.

Электромагнитные поля оказывают воздействие на ткани человека при интенсивности поля, значительно меньшей теплового порога. Они изменяют ориентацию клеток или цепей молекул в соответствии с направлением силовых линий электрического поля, ослабляют биохимическую активность белковых молекул, нарушают функции сердечно-сосудистой системы и обмена веществ.

Основным параметром, характеризующим биологическое действие электрического поля промышленной частоты, является электрическая напряженность. Магнитная составляющая заметного влияния на организм не оказывает, т.к. напряженность магнитного поля промышленной частоты не превышает 25 А/м, а вредное биологическое действие проявляется при напряженности 150-200 А/м.

Электростатические и постоянные магнитные поля широко используются в народном хозяйстве. СЭП применяются для газоочистки, сепарации различным материалов, нанесения лакокрасочных и полимерных покрытий. Постоянные магниты используются в приборостроении, в фиксирующих устройствах подъемного оборудования, в медицинской практике.

Воздействие постоянных магнитных и электростатических полей зависит от напряженности и времени воздействия. При напряженности выше предельно допустимого уровня развиваются нарушения со стороны нервной, сердечно-сосудистой систем, органов дыхания, пищеварения и некоторых биохимических показателей крови.

Основная опасность электростатического поля состоит в возможности искрового разряда. Ток, создаваемый при этом, имеет небольшие значения, однако он может привести к воспламенению горючих жидкостей или к механической травме вследствие рефлекторной реакции на прохождение тока.

Основными источниками излучения электромагнитной энергии радиочастот в окружающую среду служат антенные системы радиолокационных станций (РЛС), радио- и телерадиостанций, в том числе систем мобильной радио­связи, воздушные линии электропередачи и другие.

Электромагнитные поля промышленной частоты (ЭМП ПЧ) являются частью сверхнизкочастотного диапазона, наиболее распространенной как в производственных условиях, так и в условиях быта. Диапазон промышленной частоты в нашей стране - 50 Гц. Основными источника­ми ЭМП ПЧ являются различные типы производственного и бытового элек­трооборудования переменного тока, в первую очередь, подстанции и воз­душные линии электропередачи сверхвысокого напряжения.