Ядерный реактор в габоне африка. Природный ядерный реактор на Земле

А. Ю. Шуколюков
Химия и Жизнь №6, 1980 г., с. 20-24

Этот рассказ - об открытии, которое предсказывали давно, которого долго ждали и уже почти отчаялись дождаться. Когда же все-таки открытие свершилось, то оказалось, что цепная реакция деления урана, считавшаяся одним из высших проявлений могущества человеческого разума, когда-то давным-давно могла идти и шла без какого-либо вмешательства человека. Об этом открытии, о феномене Окло, лет семь назад писали много и не всегда корректно. Со временем страсти поутихли, а информации об этом феномене за последнее время прибавилось...

ПОПЫТКИ С НЕГОДНЫМИ СРЕДСТВАМИ

Рассказывают, что в один из осенних дней 1945 г. японский физик П. Курода, потрясенный увиденным в Хиросиме, впервые задумался о том, не может ли подобный процесс деления ядер идти в природе. А если да, то не этот ли процесс порождает неукротимую энергию вулканов, которые как раз в то время Курода изучал?

Вслед за ним этой заманчивой идеей увлеклись и некоторые другие физики, химики, геологи. Но техника - появившиеся в 50-е годы энергетические ядерные реакторы - работала против эффектного умозаключения. Не то чтобы теория реакторов накладывала запрет на такой процесс - она объявляла его слишком маловероятным.

И все-таки стали искать следы при родной цепной реакции деления. Американец И. Орр, например, попытался обнаружить признаки ядерного "горения" в тухолите. Название этого минерала вовсе не свидетельство его неприятного запаха, слово образовано из первых букв латинских названий элементов, имеющихся в этом минерале,- тория, урана, водорода (хидрогениум, первая буква - латинская "аш", читающаяся как "х") и кислорода (оксигениум). А концовка "лит" - от греческого "литое" - камень.

Но никаких аномалий в тухолите не обнаружилось.

Отрицательный результат был получен и при работе с одним из самых известных урановых минералов - уранинитом 1 . Было высказано предположение, что редкоземельные элементы, присутствующие в заирском уранините, образовались в цепной реакции деления. Но изотопный анализ показал, что эта примесь - самая обыкновенная, не радиогенная.

Исследователи из Арканзасского университета попытались найти в горячих источниках Йеллоустонского национального парка радиоактивные изотопы стронция. Рассуждали так: вода этих источников подогревается неким источником энергии; если где-то в недрах действует природный ядерный реактор, в воду неизбежно просочатся радиоактивные продукты цепной реакции деления, в частности стронций-90. Однако никаких признаков повышенной радиоактивности в йеллоустонских водах не оказалось...

Где же искать природный реактор? Первые попытки были предприняты почти вслепую, на основе соображений типа "это может быть потому, что...". До серьезной теории природного ядерного реактора было еще далеко.

НАЧАЛА ТЕОРИИ

В 1956 г. в журнале "Nature" была опубликована маленькая, всего на страницу, заметка. В ней коротко излагалась теория природного ядерного реактора. Ее автором был все тот же П. Курода. Смысл заметки сводится к расчету коэффициента размножения нейтронов К Ґ . Величина этого коэффициента определяет, быть или не быть цепной реакции деления. И в реакторе, и в месторождении, очевидно.

Когда образуется урановое месторождение, в нем могут наличествовать три главных "действующих лица" будущей цепной реакции. Это горючее - уран-235, замедлители нейтронов - вода, окислы кремния и металлов, графит (сталкиваясь с молекулами этих веществ, нейтроны растрачивают свой запас кинетической энергии и из быстрых превращаются в медленные) и, наконец, поглотители нейтронов, среди которых - осколочные элементы (о них разговор особый) и, как это ни странно, сам уран. Преобладающий изотоп - уран-238 может делиться быстрыми нейтронами, но нейтроны средней энергии (более энергичные, чем медленные, и более медленные, чем быстрые) его ядра захватывают и при этом не распадаются, не делятся.

При каждом делении ядра урана-235, вызванном столкновением с медленным нейтроном, рождается два-три новых нейтрона. Казалось бы, число нейтронов в месторождении должно лавинообразно нарастать. Но все не так просто. "Новорожденные" нейтроны - быстрые. Чтобы вызвать новое деление урана-235, они должны стать медленными. Вот здесь-то и подстерегают их две опасности. Замедляясь, они должны как бы проскочить интервал энергий, при которых с нейтронами очень охотно реагирует уран-238. Не всем это удается - часть нейтронов выбывает из игры. Уцелевшие медленные нейтроны становятся жертвами атомных ядер редкоземельных элементов, всегда присутствующих в урановых месторождениях (и реакторах тоже).

Мало того, что они - элементы рассеянные - вездесущи. Они к тому же образуются при делении ядер урана - вынужденном и спонтанном. А некоторые осколочные элементы, например гадолиний и самарий, относятся к числу самых сильных поглотителей тепловых нейтронов. В итоге, на цепную реакцию в уране, как правило, нейтронов остается не так уж много...

Коэффициент размножения К Ґ - это и есть отношение остатка нейтронов к их первоначальному числу. Если K Ґ =1, в урановом месторождении устойчиво протекает цепная реакция, если K Ґ > 1, месторождение должно самоуничтожиться, рассеяться, может даже взорваться. При К Ґ Что для этого необходимо? Во-первых, чтобы месторождение было древним. Сейчас в природной смеси изотопов урана концентрация урана-235 всего 0,7%. Не многим больше она была и 500 миллионов, и миллиард лет назад. Поэтому ни в одном месторождении моложе 1 млрд. лет не могла начаться цепная реакция, независимо от общей концентрации урана или воды-замедлителя. Период полураспада урана-235 около 700 млн. лет. Чем дальше в глубь веков, тем больше была концентрация изотопа уран-235. Два миллиарда лет назад она составляла 3,7%, 3 млрд. лет - 8,4%, 4 млрд. лет - целых 19,2%! Вот тогда, миллиарды лет назад, древнейшие месторождения урана были достаточно богатыми, готовыми вот-вот "вспыхнуть".

Древность месторождения - необходимое, но не достаточное условие действия природных реакторов. Другое, также необходимое условие - присутствие здесь же воды в больших количествах. Вода, особенно тяжелая,- лучший замедлитель нейтронов. Не случайно же критическая масса урана (93,5% 235 U) в водном растворе - меньше одного килограмма, а в твердом состоянии, в виде шара со специальным отражателем нейтронов - от 18 до 23 кг. Не меньше 15-20% воды должно было быть в составе урановой древней руды, чтобы в ней вспыхнула цепная реакция деления урана.

Но и этого еще недостаточно. Необходимо, чтобы урана в руде было не меньше 10-20%. При иных обстоятельствах природная цепная реакция не могла бы начаться. Заметим тут же, что сейчас богатыми считаются руды, в которых от 0,5 до 1,0% урана; больше 1 % - очень богатыми...

Но и это еще не все. Нужно, чтобы месторождение было не слишком маленьким. Например, в куске руды величиною с кулак - самой древней, самой концентрированной (и по урану, и по воде) - цепная реакция начаться бы не могла. Слишком много нейтронов вылетали бы из такого куска, не успев вступить в цепную реакцию. Подсчитали, что размеры залежей, которые могли бы стать природными реакторами, должны составлять хотя бы несколько кубометров.

Итак, чтобы в месторождении сам собой заработал "нерукотворный" ядерный реактор, нужно, чтобы одновременно соблюдались все четыре обязательных условия. Это и оговорила теория, сформулированная профессором Куродой. Теперь поиски природных реакторов в урановых месторождениях могли приобрести известную целенаправленность.

НЕ ТАМ, ГДЕ ИСКАЛИ

Поиски вели в США и в СССР. Американцы проводили точнейшие изотопные анализы урана, надеясь обнаружить хоть небольшое "выгорание" урана-235. К 1963 году Комиссия по атомной энергии США уже располагала сведениями об изотопном составе нескольких сотен урановых месторождений. Были изучены глубинные и поверхностные, древние и молодые, богатые и бедные месторождения урана. В семидесятых годах эти данные опубликовали. Следов цепной реакции найдено не было...

В СССР применили другой метод поисков природного ядерного реактора. Из каждых ста делений ядер урана-235 шесть приводят к образованию изотопов ксенона. Значит, при цепной реакции в урановых месторождениях должен накапливаться ксенон. Превышение концентрации ксенона (сверх 10 -15 г/г) и изменения его изотопного состава в урановой руде свидетельствовали бы о природном реакторе. Чувствительность советских масс-спектрометров позволяла обнаружить малейшие отклонения. Были исследованы многие "подозрительные" урановые месторождения - но ни в одном не обнаружилось признаков природных ядерных реакторов.

Получалось, что теоретическая возможность природной цепной реакции никогда не превратилась в действительность. К такому выводу пришли в 1970 г. А спустя всего два года французские специалисты совершенно случайно натолкнулись на природный ядерный реактор. Вот как это было.

В июне 1972 г. в одной из лабораторий Комиссариата по атомной энергии Франции готовили эталонный раствор природного урана. Измерили его изотопный состав: урана-235 оказалось 0,7171% вместо 0,7202%. Невелика разница! Но в лаборатории привыкли работать точно. Проверили результат - он повторился. Исследовали другой препарат урана - дефицит урана-235 еще больше! На протяжении следующих шести недель экстренно проанализировали еще 350 образцов и обнаружили, что из уранового месторождения Окло (Габон) во Францию доставляется урановая руда, обедненная раном-235.

Организовали расследование - оказалось, что за полтора года с рудника поступило 700 тонн обедненного урана, и общая недостача урана-235 в сырье, поступившем на атомные заводы Франции, составила 200 кг! Их, очевидно, использовала в качестве ядерного горючего сама природа...

Французские исследователи (Р. Бодю, М. Нелли и др.) срочно опубликовали сообщение, что ими обнаружен природный ядерный реактор. Затем во многих журналах были приведены результаты всестороннего изучения необычного месторождения Окло.

Феномену Окло были посвящены две международных научных конференции. Все сошлись в общем мнении: это действительно природный ядерный реактор, работавший в центре Африки сам по себе, когда и предков-то человека на Земле не было.

КАК ЖЕ ЭТО ПРОИЗОШЛО?

2 миллиарда 600 миллионов лет назад на территории нынешнего Габона и сопредельных с ним африканских государств образовалась огромная гранитная плита протяженностью во много десятков километров. (Эту дату, так же как и другие, о которых пойдет речь, определили с помощью радиоактивных часов - по накоплению аргона из калия, стронция - из рубидия, свинца - из урана.)

В течение последующих 500 миллионов лет эта глыба разрушалась, превращаясь в песок и глину. Они смывались реками и в виде осадков, насыщенных органическим веществом, слоями оседали в дельте древней громадной реки. За десятки миллионов лет толщи осадков настолько увеличились, что нижние слои оказались на глубине в несколько километров. Сквозь них просачивались подземные воды, в которых были растворены соли, в том числе немного солей уранила (ион UO 2 2+). В слоях, насыщенных органическим веществом, были условия для восстановления шестивалентного урана в четырехвалентный, который и выпадал в осадок. Постепенно много тысяч тонн урана осело в виде рудных "линз" размером в десятки метров. Содержание урана в руде достигло 30, 40, 50% и продолжало расти.

Изотопная концентрация урана-235 была тогда 4,1%. И в какой-то момент оказались соблюденными все четыре условия, необходимых для начала цепной реакции, о которых рассказано выше. И - природный реактор заработал. В сотни миллионов раз вырос поток нейтронов. Это привело не только к выгоранию урана-235, месторождение Окло оказалось скопищем многих изотопных аномалий.

Заодно с ураном-235 "выгорели" все легко взаимодействующие с нейтронами изотопы. Оказался в зоне реакции самарии - и лишился своего изотопа 149 Sm. Если в природной смеси изотопов самария его 14%, то на месте работы природного реактора - всего 0,2%. Такая же судьба постигла 151 Еu, 157 Gd и некоторые другие изотопы редкоземельных элементов.

Но и в природном ядерном реакторе действуют законы сохранения энергии и материи. Ничто не превращается в ничто. "Погибшие" атомы породили новые. Деление урана-235 - мы знаем это из физики - не что иное, как образование осколков разнообразных атомных ядер с массовыми числами от 70 до 170. Добрая треть таблицы элементов - от цинка до лютеция получается в результате деления ядер урана. В зоне цепной реакции обитают химические элементы с фантастически искаженным изотопным составом. У рутения из Окло, например, втрое больше, чем в природном рутении, ядер с массовым числом 99. В цирконии в пять раз вырастает содержание изотопа 96 Zr. "Сгоревший" 149Sm превратился в 150 Sm, и последнего в итоге в одной из проб оказалось в 1300 раз больше, чем должно было быть. Таким же путем в 100 раз возросла концентрация изотопов 152 Gd и 154 Gd.

Все эти изотопные аномалии интересны сами по себе, но они позволили многое узнать и о природном реакторе. Например, сколько времени он работал. Некоторые образовывавшиеся при работе природного реактора изотопы, естественно, были радиоактивными. Они не дожили до наших дней, распались. Но за то время, что радиоактивные изотопы находились в зоне реакции, часть из них вступила в реакцию с нейтронами. По количеству продуктов таких реакций и продуктов распада радиоактивных изотопов, зная дозу нейтронов, рассчитали длительность работы природного реактора. Оказалось, что он работал примерно 500 тысяч лет.

А дозу нейтронов узнали тоже по изотопам, по их выгоранию или накоплению; вероятность взаимодействия осколочных элементов с нейтронами известна достаточно точно. Дозы нейтронов в природном реакторе были весьма внушительными - около 10 21 нейтронов на квадратный сантиметр, то есть в тысячи раз больше, чем использующиеся в лабораториях при нейтронно-активационном химическом анализе. Каждый кубический сантиметр руды ежесекундно бомбардировали сто миллионов нейтронов!

По выгоранию изотопов подсчитали и энергию, выделенную в природном реакторе - 10 11 кВт·ч. Этой энергии хватило, чтобы температура месторождения Окло достигла 400-600°С. До ядерного взрыва, очевидно, было далеко, вразнос реактор не шел. Это, вероятно, объясняется тем, что природный реактор Окло был саморегулирующимся. Когда коэффициент размножения нейтронов приближался к единице, температура повышалась, и вода - замедлитель нейтронов - уходила из зоны реакции. Реактор останавливался, остывал, и вода снова насыщала руду - опять возобновлялась цепная реакция.

Все это продолжалось до тех пор, пока в руду свободно поступала вода. Но однажды водный режим изменился, и реактор остановился навсегда. За два миллиарда лет силы земных недр сдвинули, смяли, вздыбили под углом 45° пласты руды и вынесли их к поверхности. Природный реактор, словно замороженный в слое вечной мерзлоты мамонт, в своем первозданном виде предстал перед современными исследователями.

Впрочем, не совсем в первозданном. Некоторые изотопы, образованные при работе реактора, исчезли из зоны реакции. Например, барий, стронций и рубидий, найденные в месторождении Окло, оказались почти нормальными по изотопному составу. А ведь цепная реакция должна была вызвать громадные аномалии в составе этих элементов. Аномалии были, но и барий, и стронций, и тем более рубидий - химически активные и потому геохимически подвижные элементы. "Аномальные" изотопы вымывались из зоны реакции, а из окружающих пород на их место приходили нормальные.

Мигрировали также, хотя и не столь значительно, теллур, рутений, цирконий. Два миллиарда лет - срок большой даже для неодушевленной природы. А вот редкоземельные элементы - продукты деления урана-235 и особенно сам уран - оказались прочно законсервированными в зоне реакции.

Но что необъяснимо пока, так это причины уникальности месторождения Окло. В далеком прошлом природные ядерные реакторы в древних породах должны были возникать достаточно часто. Но их не находят. Может быть, они и возникали, но в силу каких-то причин самоуничтожались, взрывались, а месторождение Окло - единственное, чудом уцелевшее? Нет пока ответа на этот вопрос. Может быть, природные реакторы есть и еще где-то, и их стоит как следует поискать...

1 В старых справочниках состав уранинита выражается формулой UO 2 , но это идеализированная формула. На самом деле в уранините на каждый атом урана приходится от 2,17 до 2,92 атомов кислорода

Многие люди думают, что ядерная энергетика является изобретением человечества, а некоторые даже считают, что она нарушает законы природы. Но ядерная энергетика на самом деле является природным явлением, и жизнь не могла бы существовать без неё. Все потому, что наше Солнце (и любая другая звезда) сама по себе гигантская электростанция, освещая Солнечную систему с помощью процесса, известного как термоядерный синтез.

Люди, однако, чтобы генерировать эту силу используют другой процесс, называемый ядерным делением, при котором энергия высвобождается путем расщепления атомов, а не объединяя их, как в процессе сварки. Независимо от того, насколько изобретательным может показаться человечество, этот способ природа также уже использовала. В единственном, но хорошо задокументированном месте, ученые нашли доказательства того, что природные реакторы деления были созданы в трех урановых месторождениях в западной африканской стране Габон.

Два миллиарда лет назад, минеральные залежи богатые ураном начали затапливаться грунтовыми водами, вызывая самоподдерживающуюся цепную ядерную реакцию. Рассматривая уровни определенных изотопов ксенона (побочного продукта процесса деления урана) в окружающую породу, ученые определили, что естественная реакция протекала на протяжении нескольких сотен тысяч лет с интервалами около двух с половиной часов.

Таким образом, природный ядерный реактор в Окло действовал на протяжении сотен тысяч лет, пока большая часть делящегося урана не была исчерпана. В то время как большая часть урана в Окло является не делящемся изотопом U238, необходимо лишь 3% делящегося изотопа U235 для начала цепной реакции. Сегодня процент делящегося урана в месторождениях составляет около 0,7%, что свидетельствует о том, что в течение относительно длительного периода времени в них проходили ядерные процессы. Но именно точная характеристика пород из Окло первой озадачила ученых.

Низкие уровни U235 впервые были замечены в 1972 году сотрудниками фабрики по обогащению урана Пьерлате во Франции. В ходе рутинного масс-спектрометрического анализа проб из рудника Окло, было обнаружено, что концентрация делящегося изотопа урана отличалась на 0,003 % от ожидаемого значения. Эта, казалось бы, небольшая разница была достаточно существенной, чтобы предупредить власти, которые были обеспокоены тем, что пропавший уран может быть использован для создания ядерного оружия. Но позже, в этом же году, ученые нашли ответ на эту загадку - это был первый природный ядерный реактор в мире.

Многое предложенное нам природой само по себе пока совершеннее и проще того, что планирует изготовить человек, поэтому исследователи изучают, в первую очередь, то, что предлагает нам природа.

Но в том, о чем пойдет разговор в этой статье, произошло все ровным счетом наоборот.

2 декабря 1942 года команда ученых Чикагского университета под руководством нобелевского лауреата Энрико Ферми создала первый рукотворный ядерный реактор. Это достижение держалось в секрете в период Второй мировой войны, как часть так называемого "Манхэттенского проекта" по созданию атомной бомбы.

Спустя 15 лет после создания человеком реактора расщепления учёные задумались о возможности существования атомного реактора, созданного самой природой. Первая официальная публикация на тему принадлежит перу японского профессора Пола Куроды (1956 год), который установил подробные требования для любых вероятных естественных реакторов, если таковые существуют в природе.

Ученый в деталях обрисовал это явление, и его описание до сих пор считается лучшим (классическим) в ядерной физике:

  1. Приближенный возрастной диапазон образования естественного реактора
  2. Необходимая концентрация урана в нем
  3. Требуемое соотношение в нем изотопов урана - 235 U/ 238 U

Несмотря на тщательно проведенное исследование, Пол Курода не смог подыскать для своей модели пример естественного реактора среди имеющихся на планете месторождений урановой руды.

Маленькая, но критическая деталь, которую упустил из вида ученый - это возможность участия воды в качестве замедлителя цепной реакции. Он также не догадался о том, что определенные руды могут быть настолько пористы, что удерживают в себе необходимое количество воды, чтобы замедлить скорость нейтронов и поддержать реакцию.

Ученые утверждали, что только человек способен создать ядерный реактор, однако природа оказалась изощреннее.

Естественный ядерный реактор был обнаружен 2 июня 1972 года французским аналитиком Бужигесом на юго-востоке Габона в западной Африке, прямо в теле уранового месторождения.

А произошло открытие так.

Во время проведения рутинных спектрометрических исследований коэффициента содержания изотопов 235 U/ 238 U в руде с месторождения Окло в лаборатории французского уранообогатительного завода Пьеррлатт ученый-химик обнаружил небольшое отклонение (в 0,00717, по сравнению с нормой в 0,00720).

Для природы характерна стабильность изотопного состава различных элементов. Он неизменен на всей планете. В природе, конечно, протекают процессы распада изотопов, но тяжелым элементам это не свойственно, потому что разница в их массах недостаточна, для того чтобы данные изотопы делились в ходе каких-либо геохимических процессов. Но в месторождении Окло изотопный состав урана был нехарактерным. Этого маленького различия было достаточно, для того чтобы заинтересовать ученых.

Сразу появились различные гипотезы о причинах странного явления. Одни утверждали, что месторождение было заражено отработанным топливом инопланетных космических аппаратов, другие считали его местом захоронения ядерных отходов, доставшихся нам в "наследство" от древних высокоразвитых цивилизаций. Тем не менее, детальные исследования показали, что столь необычное соотношение изотопов урана образовалось естественным путем.

Вот какова смоделированная история этого "чуда природы".

Заработал реактор около двух миллиардов лет назад во времена протерозоя. Протерозой щедр на открытия. Именно в протерозое были разработаны основные принципы существования живой материи и развития жизни на Земле. Появились первые многоклеточные организмы и начали осваивать прибрежные воды, количество свободного кислорода в атмосфере Земли достигло 1%, и появились препосылки для бурного расцвета жизни, произошел переход от простого деления к половому размножению.

И вот, в столь важное для Земли время появляется и наш "ядерный природный феномен".

Все-таки удивительно, что в мире не найдено больше ни одного аналогичного реактора. Правда, по некоторым сведениям, следы похожего реактора найдены в Австралии. Объяснить это можно только тем, что в далекий кембрийский период Африка и Австралия представляли собой единое целое. Еще одна окаменелая реакторная зона также была обнаружена в Габоне, но в другом месторождении урана - в Бангомбе, в 35 километрах к юго-востоку от Окло.

На Земле известны урановые месторождения того же возраста, в которых, однако, ничего похожего не происходило. Вот только самые известные из них: Девилз-Хоул и Рэйниер-Мейса в штате Невада, Пенья-Бланка в Мексике, Бокс-Кэньон в Айдахо, Каймакли в Турции, Шове-Кав во Франции, Сигар-Лейк в Канаде и Оуэнс-Лейк в Калифорнии.

По-видимому, в протерозое в Африке возникли ряд уникальных условий, необходимых для запуска естественного реактора.

Каков же механизм столь удивительного процесса?

Вероятно, сначала в некой впадине, возможно, в дельте древней реки, образовался богатый урановый рудой слой песчаника, который покоился на крепком базальтовом ложе. После очередного землетрясения, обычного в ту эпоху, базальтовый фундамент будущего реактора опустился на несколько километров, потянув за собой урановую жилу. Жила растрескалась, в трещины проникла грунтовая вода. При этом уран охотно мигрирует с водой, содержащей большое количество кислорода, то есть в окислительной обстановке.

Насыщенная кислородом вода пробирается сквозь толщу горной породы, вымывает из нее уран, увлекает его за собой и постепенно расходует содержащийся в ней кислород на окисление органики и двухвалентного железа. Когда запас кислорода исчерпан, химическая обстановка в земных глубинах из окислительной становится восстановительной. "Странствие" урана после этого завершается: он отлагается в горных породах, накапливаясь на протяжении многих тысячелетий. Затем очередной катаклизм поднял фундамент до современного уровня. Такой схемы придерживаются многие ученые, в том числе и предложившие ее.

Как только масса и толщина слоев, обогащённых ураном, достигла критических размеров, в них возникла цепная реакция, и "агрегат" заработал.

Несколько слов следует сказать и о самой цепной реакции, которая является следствием сложных химических процессов, проходящих в "природном реакторе". Легче всего расщепляются ядра 235 U, которые, поглощая нейтрон, делятся на два фрагмента расщепления и испускают при этом два-три нейтрона. Изгнанные нейтроны могут, в свою очередь, быть поглощены другими урановыми ядрами, провоцируя нарастание распада.

Такая самоподдерживающаяся реакция управляема, чем и воспользовались люди, создавшие ядерный реактор расщепления. В нем контроль осуществляется при помощи управляющих стержней (произведенных из хорошо поглощающих нейтроны материалов, например, из кадмия), спускаемых в "горячую зону". В своем реакторе Энрико Ферми использовал именно такие кадмиевые пластины для регуляции ядерной реакции. Реактор же в Окло никем не управлялся в обычном понимании этого термина.

Цепная реакция сопровождается выделением большого количества тепла, поэтому до сих пор было неясно, почему природные реакторы в Габоне не взрывались, а реакции саморегулировались.

Ныне ученые уверены, что знают ответ. Исследователи из Вашингтонского университета считают, что взрывов не случалось благодаря присутствию горных водных источников. В различных реакторах, созданных человеком, в качестве замедлителя используется графит, необходимый для поглощения испускаемых нейтронов и поддержания цепной реакции, а в Окло роль замедлителя реакции исполняла вода. Когда в природный реактор попадала вода, она закипала и испарялась, в результате чего цепная реакция на время приостанавливалась. На охлаждение реактора и накопление воды требовались примерно два с половиной часа, а длительность активного периода составляла порядка 30 минут, сообщаетNature .

Когда порода остывала, вода вновь просачивалась и запускала ядерную реакцию. И так, то вспыхивая, то угасая, реактор, мощность которого составляла порядка 25 кВт (что в 200 раз меньше, чем у самой первой атомной электростанции), проработал приблизительно 500 тысяч лет.

В Окло, как и на всей остальной Земле и в Солнечной системе в целом, два миллиарда лет назад относительное содержание изотопа 235 U в урановой руде составляло 3000 на миллион атомов. В настоящее же время образование на Земле ядерного реактора естественным путём уже невозможно, поскольку в природном уране ощущается нехватка 235 U.

Есть и еще целый ряд условий, выполнение которых обязательно для запуска природной реакции расщепления:

  1. Высокая общая концентрация урана
  2. Низкая концентрация поглотителей нейтронов
  3. Высокая концентрация замедлителя
  4. Минимальная или критическая масса для запуска реакции расщепления

Кроме того, что природой был запущен сам механизм естественного реактора, не может не волновать и следующий, пожалуй, самый "насущный" для мировой экологии вопрос: что же произошло с отходами естественной ядерной "энергостанции"?

В результате работы природного реактора образовалось около шести тонн продуктов деления и 2,5 тонны плутония. Основная масса радиоактивных отходов "захоронена" внутри кристаллической структуры минерала уранита, который обнаружен в теле руд Окло.

Неподходящие по размерам ионного радиуса элементы, которые не могут проникнуть сквозь решетку уранита, либо взаимопроникают, либо выщелачиваются.

Оклинский реактор "поведал" человечеству о том, как можно захоронить ядерные отходы так, чтобы это могильник был безвреден для окружающей среды. Есть свидетельства того, что на глубине свыше ста метров при отсутствии несвязанного кислорода практически все продукты ядерных захоронений не вышли за границы рудных тел. Зарегистрированы перемещения только таких элементов, как йод или цезий. Это дает возможность провести аналогию между природными процессами и технологическими.

Самое пристальное внимание защитников окружающей среды привлекает проблема миграции плутония. Известно, что плутоний практически целиком распадается до 235 U, поэтому его неизменное количество может говорить о том, что избытка урана нет не только вне реактора, но также и вне гранул уранита, где образовывался плутоний во время активности реактора.

Плутоний - достаточно чужеродный элемент для биосферы, и встречается он в мизерной концентрации. Наряду с некоторым количеством в руде урановых месторождений, где он впоследствии распадается, немного плутония образуется из урана при взаимодействии с нейтронами космического происхождения. В малых количествах уран может встречаться в природе в различных концентрациях в абсолютно различных естественных средах - в гранитах, фосфоритах, апатитах, морской воде, почве и др.

В данный момент Окло - действующее урановое месторождение. Те рудные тела, которые располагаются у поверхности, добывают карьерным методом, а те, что на глубине, горными выработками.

Из семнадцати известных ныне ископаемых реакторов девять полностью засыпаны (недоступны).
Реакторная зона 15 - единственный реактор, который доступен через тоннель в шахте реактора. Остатки ископаемого реактора 15 ясно различимы как легкая серо-желтая цветастая скала, которая сложена, главным образом, из окиси урана.

Светлые цветные полоски в скалах выше реактора - это кварц, который выкристализовался из горячих подземных водных источников, циркулировавших в период активности реактора и после его угасания.

Однако как об альтернативной оценке событий того далекого времени можно упомянуть и о следующем мнении, связанном с последствиями работы природного реактора. Предполагается, что природный ядерный реактор мог привести к многочисленным мутациям живых организмов в том регионе, подавляющее большинство которых вымерли как нежизнеспособные. Некоторые палеоантропологи считают, что именно высокая радиация вызвала неожиданные мутации у бродивших как раз неподалеку африканских предков человека и сделала их людьми (!).

Король А.Ю. - студент 121 класса СНИЯЭиП (Севастопольский национальный институт ядерной энергии и промышленности.)
Руководитель - к.т.н. , доцент кафедры ЯППУ СНИЯЭиП Вах И.В., ул. Репина 14 кв. 50

В Окло (урановый рудник в государстве Габон, вблизи экватора, западная Африка) 1900 миллионов лет назад работал природный ядерный реактор. Было выделено шесть "реакторных" зон, в каждой из которых обнаружены признаки протекания реакции деления. Остатки распадов актиноидов указывают на то, что реактор работал в режиме медленного кипения на протяжении сотен тысяч лет.

В мае - июне 1972 года при рядовых измерениях физических параметров партии природного урана поступившего на обогатительную фабрику французского города Пьерлате из африканского месторождения Окло (урановый рудник в Габоне, государстве, расположенном вблизи экватора в Западной Африке) обнаружилось, что изотопа U - 235 в поступившем природном уране меньше стандартного. Было обнаружено, что в уране содержится 0,7171% U - 235. Нормальное значение для природного урана 0,7202%
U - 235. Во всех урановых минералах, во всех горных породах и природных водах Земли, а также в лунных образцах это соотношение выполняется. Месторождение в Окло пока единственный, зарегистрированный в природе случай, когда это постоянство было нарушено. Разница была незначительная - всего лишь 0,003%, но тем не менее она привлекла внимание технологов. Возникло подозрение, что имела место диверсия или похищение делящегося материала, т.е. U - 235. Однако оказалось, что отклонение в содержание U-235 прослеживалось вплоть до источника урановой руды. Там в некоторых пробах было обнаружено менее 0,44% U-235.пробы брали повсюду по руднику и показали систематическое уменьшение содержания U-235 поперёк некоторых жил. Эти рудные жилы имели толщину более 0,5 метров.
Предположение, что U-235 "выгорел", как это бывает в топках ядерных электростанций, поначалу прозвучало как шутка, хотя для того имелись серьёзные основания. Расчёты показали, что если массовая доля грунтовых вод в пласте составляет около 6% и если природный уран обогащён до 3% U-235, то при этих условиях может начать работать природный ядерный реактор.
Поскольку рудник находится в тропической зоне и довольно близко к поверхности, то существование достаточного количества грунтовых вод весьма вероятно. Соотношение изотопов урана в руде было не обычным. U-235 и U-238 - радиоактивные изотопы с различными периодами полураспада. U-235 имеет период полураспада 700 млн. лет, а U-238 распадается с периодом полураспада в 4,5 млрд. Изотопное содержание U-235 находится в природе в процессе медленного изменения. Например, 400 млн. лет назад в природном уране должен был быть 1% U-235, 1900 млн. лет назад его было 3%, т.е. необходимое количество для "критичности" жилы урановой руды. Считается, что именно тогда реактор Окло находился в состоянии работы. Было выделено шесть "реакторных" зон, в каждой из которых обнаружены признаки протекания реакции деления. Например, торий от распада U-236 и висмут от распада U-237 были обнаружены только в реакторных зонах в месторождении Окло. Остатки от распада актиноидов указывают на то, что реактор работал в режиме медленного кипения на протяжении сотен тысяч лет. Реакторы были саморегулирующимися, так как чересчур большая мощность привела бы к полному выкипанию воды и к остановке реактора.
Как же природе удалось создать условия для цепной ядерной реакции? Сначала в дельте древней реки образовался богатый урановый рудой слой песчаника, который покоился на крепком базальтовом ложе. После очередного землетрясения обычного в то буйное время базальтовый фундамент будущего реактора опустился на несколько километров, потянув за собой урановую жилу. Жила растрескалась, в трещины проникла грунтовая вода. Затем очередной катаклизм поднял всю "установку" до современного уровня. В ядерных топках АЭС топливо располагается компактными массами внутри замедлителя гетерогенный реактор. Так получилось и в Окло. Замедлителем служила вода. В руде появились глинистые "линзы", где концентрация от природного урана от обычных 0,5% повысилась до 40%. Как образовались эти компактные глыбы урана, точно не установлено. Возможно их создали фильтрационные воды, которые уносили глину и сплачивали уран в единую массу. Как только масса и толщина слоёв, обогащённых ураном, достигла критических размеров, в них возникла цепная реакция, и установка начала работать. В результате работы реактора образовалось около 6 тонн продуктов деления и 2,5 тонны плутония. Большинство радиоактивных отходов осталось внутри кристаллической структуры минерала уранита, который обнаружен в теле руд Окло. Элементы, которые не смогли проникнуть сквозь решётку уранита из-за слишком большого или слишком маленького ионного радиуса, диффундируют или выщелачиваются. В течении 1900 млн. лет, прошедших со времён работы реакторов в Окло, по крайней мере половина из более чем тридцати продуктов деления оказались связанные в руде, несмотря на обилие грунтовых вод в этом месторождении. Связанные продукты деления включают в себя элементы: La, Ce, Pr, Nd, Eu, Sm, Gd, Y, Zr, Ru, Rh, Pd, Ni, Ag. Была обнаружена некоторая частичная миграция Pb, а миграция Pu была ограничена расстоянием меньше 10 метров. Только металлы с валентностью 1 или 2, т.е. те, которые обладают высокой растворимостью в воде, были унесены. Как и предполагалось, на месте почти не осталось Pb, Cs, Ba и Cd. Изотопы этих элементов имеют относительно короткие периоды полураспада десятки лет или меньше, так что они распадаются до нерадиоактивного состояния прежде, чем смогут далеко мигрировать в почве. Наибольший интерес с точки зрения долговременных проблем защиты окружающей среды представляют вопросы миграции плутония. Этот нуклид эффективно связан на срок почти 2 млн. лет. Так как плутоний к настоящему времени почти полностью распадается до U-235, то о его стабильности свидетельствует отсутствие избытка U-235 не только снаружи реакторной зоны, но также вне зёрен уранита, где образовывался плутоний во время работы реактора.
Существовал этот уникум природы около 600 тысяч лет и выработал примерно 13000000 кВт. час энергии. Его средняя мощность всего 25 кВт: в 200 раз меньше, чем у первой в мире АЭС, давшей в 1954 году электроэнергию подмосковному городу Обнинску. Но энергия природного реактора не расходовалась впустую: по некоторым гипотезам именно распад радиоактивных элементов снабжал энергией разогревающуюся Землю.
Возможно, сюда приплюсовывалась и энергия аналогичных ядерных реакторов. Сколько их скрыто под землёй? И реактор в то Окло в то стародавнее время, безусловно, был не исключением. Существуют гипотезы, что работа таких реакторов "подстегнула" развитие на земле живых существ, что зарождение жизни связано с влиянием радиоактивности. Данные свидетельствуют о более высокой степени эволюции органической материи по мере приближения к реактору Окло. Он вполне мог оказывать влияние на частоту мутаций одноклеточных, попадавших в зону повышенного уровня радиации, что и привело к появлению предков человека. Во всяком случае жизнь на Земле возникла и прошла долгий путь эволюции на уровне естественного фона радиации, которая стала необходимым элементом развития биологических систем.
Создание атомного реактора - новшество, которым гордится человек. Оказывается его создание давно записано в патентах природы. Сконструировав ядерный реактор, шедевр научно - технической мысли, человек, по сути дела, оказался имитатором природы, много миллионов лет тому назад создавшей установки подобного рода.


Если с вами произошел необычный случай, вы увидели странное существо или непонятное явление, вам приснился необычный сон, вы увидели в небе НЛО или стали жертвой похищения пришельцев, вы можете прислать нам свою историю и она будет опубликована на нашем сайте ===> .

Сторонники гипотезы об инопланетном происхождении человечества утверждают, что в незапамятные времена в Солнечную систему могла прибыть космическая экспедиция из центральной части галактики, где и звезды, и вращающиеся вокруг них планеты старше, значит, и жизнь зародилась и достигла высокого развития раньше, чем у нас.

Космические «прогрессоры» вначале обжили Фаэтон, который в ту пору, когда Солнце было моложе и горячее, был наиболее пригоден для жизни.

А когда на этой планете вспыхнула страшная война, расколовшая ее на части и превратившая в пояс астероидов, выжившая часть человечества обосновалась на Марсе. Через многие годы и марсианская цивилизация не смогла переступить в своем развитии «ядерный порог» и была уничтожена. Но выжили колонисты, которые уже осваивали Землю.

Сторонниками этой теории были не только писатели-фантасты (Александр Казанцев и др.). К примеру, в 1961 году советский ученый, математик и астроном, знаток древних языков Матест Агрест опубликовал статью «Космонавты древности». Автор считает, что некоторые артефакты и памятники прошлого являются свидетельством пребывания на Земле представителей какой-то высокоразвитой инопланетной цивилизации.

Он пишет: «...можно допустить, что обследование Солнечной системы космонавты производили малыми кораблями, стартуя с Земли. Для этих целей, возможно, понадобилось добывать на Земле добавочное ядерное горючее и построить специальные площадки и хранилища».

Рудник в Окло: реактор или...

Вполне возможно, что гипотезу Матеста Агреста подтверждает неожиданное открытие, сделанное в 1972 году. Одна французская компания добывала урановую руду на руднике Окло в Габоне. И вот во время проведения обычного анализа образцов руды обнаружилось, что процентное содержание урана-235 в ней ниже нормы.

Затем была зафиксирована недостача около 200 килограммов этого изотопа. Специалисты французского Комиссариата атомной энергетики забили тревогу. Ведь пропавшего вещества вполне достаточно для изготовления нескольких атомных бомб.

Дальнейшие исследования показали, что концентрация урана-235 в руднике Окло такая же, как в отработанном топливе из реактора атомной станции. Так что же это такое? Неужели ядерный могильник? Но как такое может быть, если он создан около двух миллионов лет назад?

Озадаченные атомщики нашли ответ в статье, опубликованной американскими учеными Джорджем Ветриллом и Марком Ингрэмом в 1956 году. Ученые высказали предположение о существовании в далеком прошлом природных ядерных реакторов. А Пол Курода, химик из Арканзасского университета, даже определил необходимые и достаточные условия для того, чтобы в теле уранового месторождения спонтанно возник процесс самоподдерживающегося расщепления.

В 1975 году в столице Габона Либревиле состоялась научная конференция, на которой обсуждался феномен Окло. Большинство ученых пришли к выводу, что рудник представляет собой единственный известный на Земле естественный ядерный реактор. Он запустился около двух миллионов лет назад самопроизвольно в силу уникальных природных условий и проработал 500 тысяч лет.

Что же это за условия? В дельте реки на крепком базальтовом ложе отложился слой песчаника, богатого урановой рудой. В результате тектонической активности базальтовый фундамент погрузился в землю на несколько километров вместе с ураноносным песчаником. Песчаник растрескался, в трещины стала проникать грунтовая вода.

В руднике Окло так же, как и в ядерных топках АЭС, топливо располагалось компактными массами внутри замедлителя. Замедлителем служила вода. В руде содержались глинистые «линзы». В них концентрация природного урана с обычных 0,5% повысилась до 40%. После того как масса и толщина слоев достигли критических размеров, возникла цепная реакция и установка начала работать.

Вода была естественным регулятором. Поступая в активную зону, она запускала цепную реакцию, которая приводила к испарению воды, уменьшению потока нейтронов и остановке реакции. Через 2,5 часа, когда активная зона реактора остывала, цикл повторялся.

Затем очередной катаклизм приподнял «установку» до прежнего уровня, либо уран-235 выгорел, и реактор прекратил работу.

Хотя за полмиллиона лет этот природный реактор выработал 13 миллионов киловатт-часов энергии, мощность его была невелика. Она в среднем была меньше 100 киловатт, что хватило бы для работы нескольких дюжин тостеров.

...ядерный могильник?

Но у многих атомщиков выводы конференции в Либревиле вызывают большие сомнения.

Ведь еще Энрико Ферми - создатель первого в мире ядерного реактора - утверждал, что цепная ядерная реакция может иметь только искусственное происхождение. С одной стороны, если природа каким-то невообразимым способом сумела ее запустить в Окло, то для постоянной поддержки реакции должен работать целый ряд факторов, вероятность одновременного наличия которых практически равна нулю.

В самом деле, малейший сдвиг пластов грунта в этом районе, который в ту пору отличался высокой тектонической активностью, привел бы к остановке реактора, а прежние условия для его запуска едва ли могли возникнуть снова. А если регулятором цепной реакции были грунтовые воды, то без отсутствия искусственной регулировки мощности реактора ее самопроизвольное увеличение привело бы к выкипанию воды и остановке процесса, и не факт, что он снова самопроизвольно запустился бы.

А с другой стороны, рудник в Габоне не слишком-то похож на ядерный реактор, созданный высокоразвитой цивилизацией. Слишком мала его мощность, овчинка, как говорится, не стоит выделки. Скорее, он напоминает место захоронения отработанного ядерного топлива. Причем оборудовано оно идеально. За почти два миллиона лет ни грамма радиоактивных веществ не проникло в окружающую среду. Уран надежно замурован в базальтовый «саркофаг».

В замкнутом круге

Но если есть могильник с отработанным ядерным топливом, значит, были и реактор, вырабатывающий атомную энергию, и высокоразвитая цивилизация, использующая ее. Куда же она делась?

В последнее время все чаще бытуют гипотезы, что нынешняя технократическая цивилизация - далеко не первая на Земле. Вполне возможно, высокоразвитые цивилизации, овладевшие могущественнейшими силами природы, существовали на нашей планете миллионы лет назад. Но только ни одна из них не сумела использовать эту мощь во благо, для созидания, а не для разрушения.

На определенном этапе технократического развития возникало противоборство двух или нескольких государственных образований, выливавшееся в мировую войну с использованием столь чудовищного оружия, что ядерное в сравнении с ним покажется детской забавой. В результате человечество уничтожало само себя, менялся сам лик планеты, а чудом выжившие люди впадали в первобытное состояние, утрачивая все знания и навыки.

В последний раз такая всемирная катастрофа произошла примерно 50 тысяч лет назад, когда арии (гипербореи) сошлись в смертельной битве с атлантами.

Пустив в ход тектоническое оружие, враги добились лишь Всемирного потопа, в результате которого ушли под воду и Гиперборея, и Атлантида, а из воды поднялись новые континенты, на которых теперь, через десятки тысяч лет, вновь развилась технократическая цивилизация, владеющая ядерным оружием и подбирающаяся к более страшным средствам уничтожения.

Сможет ли она в очередной раз не споткнуться об «ядерный порог»? Вырвется ли из этого замкнутого круга? Направит ли свою мощь на созидание, а не на разрушение? Нет ответа ни у науки, ни у религии.

Виктор МЕДНИКОВ, журнал "Тайны ХХ века"